Sikaflex 15 LM

Application Instructions

Sikaflex 15 LM

A high-performance, low-modulus elastomeric sealant.

Where to use:

- Excellent for moving joints in vertical applications
- Suitable for use between similar as well as dissimilar materials
- Typical applications include joints in concrete panel and wall systems, around window and door frames, reglets, flashing etc.
- Exceptional sealant choice for high-rise façade applications where high movement capability is required
- As effective sealant for use in Exterior Insulation Finish Systems (EIFS)

Sikaflex 15LM

High Performance, Low Modulus Elastomeric Sealant

- ▲High movement joints
- Excellent primer-less adhesion to many substrates
- ▲Exceptional cut and tear resistance
- ▲Paintable and sandable
- ▲Non staining
- ▲ Proven in tough climates around the world
- ASTM C920 Class 100/50
 - +100/-50% movement
 - SWR Institute Validated
- ▲16 standard colors
 - Cartridges & sausages
 - Pails & drums special order

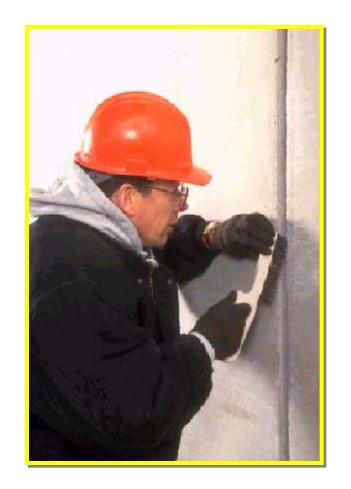
Sikaflex 15LM

High Performance, Low Modulus Elastomeric Sealant

Where to use:

- Excellent for moving joints in vertical applications
- Suitable for use between similar as well as dissimilar materials
- Typical applications include joints in concrete panel and wall systems, around window and door frames, reglets, flashing etc.
- Exceptional sealant choice for high-rise façade applications where high movement capability is required
- As effective sealant for use in Exterior Insulation Finish Systems (EIFS)
- Can be used in silicone applications
 - No primer needed
 - Better against
 - Moisture in the substrate
 - Dirt and dust pick up

Sealant Installation


Substrate Preparation

- Proper preparation will eliminate majority of installation failures
 - Most common mode of sealant failure is adhesive
- Remove all weak material on bonding surface of porous substrates
- Surfaces must be clean, dry, and free of dew or frost
- Use best practices per industry standards
 - Porous substrate: abrasive, high pressure water (allow to dry after), grinding, wire brush
 - Non-porous substrate: 2 rag method
 Sika Corporation

Mechanical Methods

- ▲Wire brushing
- ▲Sand blasting
- **▲**Grinding
- **▲**Sawing

Critical Success Factors

Priming

▲Priming can help get a better bond in many situations

- Priming does no substitute for good prep
- Many products perform w/out primers
- Most commonly used on horizontal and submerged applications
- Must be done properly to work (primers are not error free: etc.)

Proper primer application with brush ponding, waiting time Prime only sides of the joint. Primer outside the joint may stain the substrate. Prime & seal the same day

Critical Success Factors

Backing materials

▲Why use backer rod:

- Attain proper wetting of substrate when sealant is tooled
- Control sealant depth
- Prevent 3-sided adhesion
- Provide support for traffic areas

Critical Success Factors

Backing materials

- Recommended Materials
 - Closed cell backer rod: primarily a foam material with a surface skin
 - Open cell backer rod: primarily a foam material without a skin
 - Bicellular backer rod: sometimes called "soft" rod, this foam acts like a hybrid between open and closed cell rods
 - Backing tape: primarily a self-adhesive polyethylene or Teflon material
 - Hard rectangular extrusions for horizontals

Sealant Installation

Backing Materials

Sika Corporation

Sealant Installation Backing Materials

- ▲ Make sure backer rod is 25% larger than joint width (under compression) to offer good tooling base
- No not puncture closed cell backer rod when installing prior to sealant installation
 - Will cause bubbling in sealant

15 Im Packaging

- ▲10.1 oz (300 ml) cartridges
 - 24 per case
 - Stocked item
- ▲20 oz (600 ml) "unipack" sausages
 - 20 per case
 - Stocked item
- ▲5 gallon pail with 4.5 gallons
 - 20 L pail with 17 L of material
 - Non stock 3 week lead time
- ▲55 gallon drum with 50 gallons
 - 200 L drum with 190 L of material
 - Non Stock 3 week lead time

Sealant Installation Loading

Cartridge

- Cut cartridge tip and puncture seal at the nozzle base
- Load cartridge into caulk gun

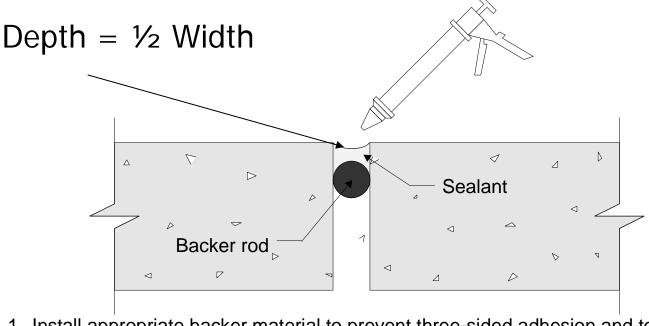
Sausage

- Load sausage into sausage gun, then cut the metal clip off
- Attach nozzle

Sika Corporation

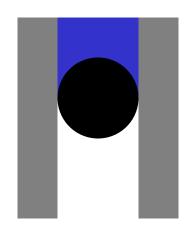
Sealant Installation Gunning

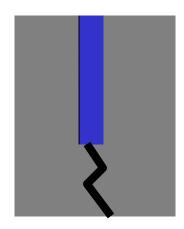
- Place nozzle of gun into the bottom of the joint and fill the entire joint
- Keeping nozzle deep in the sealant, continue a steady flow of sealant preceding the nozzle to avoid air entrapment
- Avoid overlapping sealant
- Coverage:
 - 10.1 fl oz yields 12.2 linear feet of ½" x
 ½" joint
 - 20 fl oz uni-pac yields 24 linear ft of a ½ " x ¼" joint


Sealant Installation Tooling

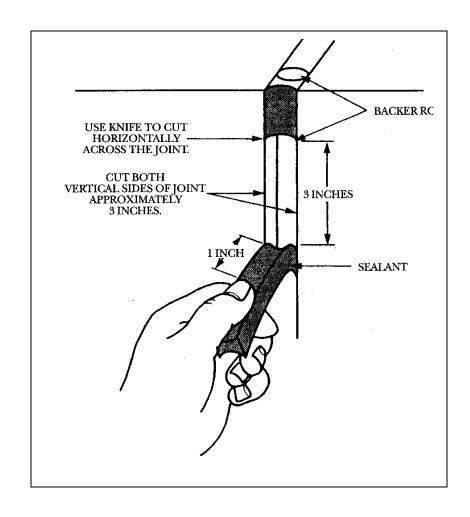
Dry tool sealant to press material against joint walls or bonding surface

Sealant Installation Joint Design

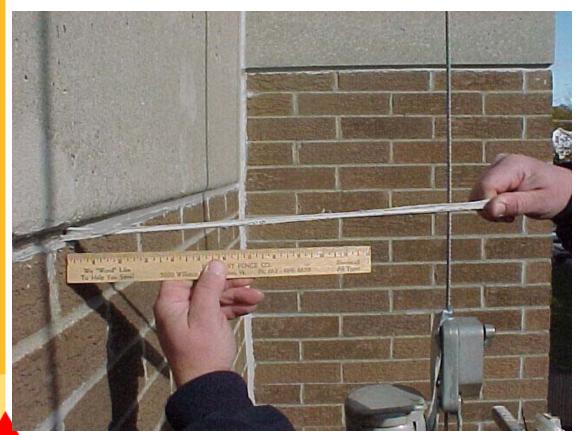



- 1. Install appropriate backer material to prevent three-sided adhesion and to control sealant depth.
- Sealant should be gunned into joint at mid-point of designed expansion and contraction to maximize accommodation of movement. Joint dimension of 4X anticipated movement allows proper function of high performance sealants even if applied at temperature extremes.
- 3. Tool as required to properly fill joints and force sealant against joint interfaces, maximizing bond.

Sealant Installation Joint Design


- ▲ 2:1 or 1:1 width:depth
- ▲ Minimum ¼" x ¼"
- ▲ Minimum ½" depth for traffic
- ▲ 2 sided adhesion, not 3
- Joint movement to match product

- Protect nosing
- Needs support
- May separate


Jobsite Mock-Up

- Jobsite Pull Test:
 - After material has cured to ensure proper bond

Jobsite Pull Test

Place sealant and allow to cure. Cut a 2-3" piece of the sealant and pull at a 90° angle from the substrate. The sealant should not "peel" from the joint interface.

Sikaflex 15 LM

Sika Technical Data Sheets can be obtained via:

www.sikaconstruction.com

Refer to data sheets for specific information on each Sika product.

