Declaration of conformity for products with Model EPDs

The European Federation of Concrete Admixtures Associations (EFCA) has developed Model Environmental Product Declarations (Model EPD) for six categories of admixtures. These model EPDs have been verified as being in compliance with EN 15804 and ISO 14025 and published by the independent Institute for Construction and Environment in Germany (IBU). Additionally, the Model EPDs are based on the established Product Category Rules (PCR) for Concrete Admixtures which are currently the only generic PCRs that exist for this product type. The Model EPDs are also available for download from the EFCA website.

Sika is a member of Fachverband Schweizerischer Hersteller von Betonzusatzmitteln (FSHBZ) which is a national association member of EFCA. This gives the company the right to declare that a specific EFCA Model EPD applies to the named products listed below, by using an IBU-approved guideline procedure, to confirm that any particular product is within the scope of a specific product category Model EPD. This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for LEED v4 sustainability assessment of the construction products and construction projects, in which they are used.

EFCA Model EPD: Plasticizers and Superplasticizers - EPD-EFC-20150091-IAG1-EN

Product Trade Name:
SikaPlast®-200

Sika Corporation

Ondrej Masek
Vice President Concrete Technology

SIKA CORPORATION
201 Polito Avenue · Lyndhurst · NJ 07071 · USA
Phone: +1 201 933 8800 · Fax: +1 201 933 6225 · www.usa.sika.com
ENVIRONMENTAL PRODUCT DECLARATION
as per ISO 14025 and EN 15804

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>European Federation of Concrete Admixtures Associations Ltd. (EFCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme holder</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Publisher</td>
<td>Institut Bauen und Umwelt e.V. (IBU)</td>
</tr>
<tr>
<td>Declaration number</td>
<td>EPD-EFC-20150091-IAG1-EN</td>
</tr>
<tr>
<td>ECO EPD Ref. No.</td>
<td>ECO-00000385</td>
</tr>
<tr>
<td>Issue date</td>
<td>14/09/2015</td>
</tr>
<tr>
<td>Valid to</td>
<td>13/09/2020</td>
</tr>
</tbody>
</table>

Concrete admixtures – Plasticisers and Superplasticisers
European Federation of Concrete Admixtures Associations Ltd. (EFCA)

www.ibu-epd.com / https://epd-online.com
1. General Information

European Federation of Concrete Admixtures Associations Ltd. (EFCA)

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Concrete admixtures – plasticisers and superplasticisers

Owner of the Declaration
European Federation of Concrete Admixtures Associations Ltd. (EFCA)
Radius House, 51 Clarendon Road, Watford,
Herts, WD17 1HP United Kingdom

Declaration number
EPD-EFC-2015091-IAG1-EN

This Declaration is based on the Product Category Rules:
Concrete admixtures, 07.2014
(PCR tested and approved by the SVR)

Issue date
14/09/2015

Valid to
13/09/2020

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann
(Managing Director IBU)

Matthias Schulz
(Independent verifier appointed by SVR)

2. Product

2.1 Product description
Admixtures are liquid or powdery agents that are introduced in small amounts (< 5% by mass of the cement content) to concrete while it is being mixed and that enhance the properties of the fresh and/or hardened concrete.

Plasticisers and superplasticisers are admixtures which reduce the water content of mixed concrete without detriment to its consistency or enhance its slump with or without change to the water content or cause both effects simultaneously. They can also display a retarding effect when used as combination products.

The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).

2.2 Application
Concrete admixtures are used as constituent materials for the production of concrete, mortar and grout (unreinforced concrete, reinforced and prestressed concrete, site-mixed and ready-mixed concrete, precast concrete). Their application should be in line with the manufacturer’s technical documents and Declaration of Performance.

2.3 Technical Data
Plasticisers and superplasticisers must comply with the general requirements of /EN 934-1:2008/ and the additional requirements of /EN 934-2:2009+A1:2012/.

Constructional data

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density /ISO 758/</td>
<td>1 - 1.6</td>
<td>g/ml</td>
</tr>
<tr>
<td>Solids content /EN 480-8/</td>
<td>-1</td>
<td>M.-%</td>
</tr>
<tr>
<td>pH value /ISO 4316/</td>
<td>-1</td>
<td>log_{10}(a_{H+})</td>
</tr>
<tr>
<td>Chloride content /EN 480-10/</td>
<td>Maximum value to be declared by the manufacturer</td>
<td>M.-%</td>
</tr>
<tr>
<td>Alkali content /EN 480-12/</td>
<td>Maximum value to be declared by the manufacturer</td>
<td>M.-%</td>
</tr>
<tr>
<td>Corrosion behavior /EN 934-1f, /EN 480-14/</td>
<td>-2</td>
<td>μ A/cm²</td>
</tr>
<tr>
<td>SiO2 content /EN 192-2/</td>
<td>-3</td>
<td>M.-%</td>
</tr>
<tr>
<td>Air content of fresh concrete /EN 12350-7/</td>
<td>Test mix ≤ 2% by volume above control mix unless stated otherwise by the manufacturer</td>
<td>Vol.-%</td>
</tr>
<tr>
<td>Compressive strength /EN 12390-3/</td>
<td>-4</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Water reduction /EN 12350-2f, /EN 12350-5f, Plasticiser</td>
<td>Test mix ≥ 5% compared to control mix Superplasticiser: Test mix ≥ 12% compared to control mix</td>
<td>mm</td>
</tr>
<tr>
<td>Increasing / maintaining of consistence /EN 12350-2f, /EN 12350-5f, Superplasticiser</td>
<td>-5</td>
<td>mm</td>
</tr>
<tr>
<td>Setting time /EN 480-2f, Accelerator/Retarder</td>
<td>-6</td>
<td>min</td>
</tr>
<tr>
<td>Air void Characteristics in hardened concrete /EN 480-11f, Air entrainer</td>
<td>-7</td>
<td>mm</td>
</tr>
<tr>
<td>Capillary water absorption /EN 480-5f, Densifier</td>
<td>-8</td>
<td>g/mm²</td>
</tr>
</tbody>
</table>

¹ Value will be made available to user on request
² No corrosion behaviour test is required for admixtures which contain active substances in the list of approved substances to /EN 934-1f, Annex A.1 and in the list of declared substances to /EN 934-1f, Annex A.2.
³ Maximum value must only be indicated when SiO₂ percentage by mass > 5%
□ Details not relevant for this type of admixture
□ Concrete plasticiser:
 At 7 and 28 days: Test mix ≥ 110% of control mix Superplasticiser (tested at equal consistency):
 At 1 day: Test mix ≥ 140% of control mix
 At 28 days: Test mix ≥ 115% of control mix Superplasticiser (tested at equal w/c ratio): At 28 days: Test mix ≥ 90% of control mix
□ Increase in consistence
□ Increase in slump ≥ 120 mm from initial (30 ± 10) mm or Increase in flow ≥ 160 mm from initial (350 ± 20) mm
□ Retention of consistence 30 min after the addition: the consistence of test mix ≥ initial consistence of the control mix

2.4 Application rules
For the application and use of the products the respective national provisions apply.

2.5 Delivery status
Plasticisers and superplasticisers are usually supplied in liquid, paste or powder form in containers made of steel or plastic. Typical container sizes are canisters containing approx. 25 kg, drums with approx. 200 kg or Intermediate Bulk Containers (IBC) with 1000 kg. The containers are shipped on wooden pallets. For larger applications, loose deliveries in tank trucks with a capacity in excess of 1 tonne are also used.

2.6 Base materials / Ancillary materials
Plasticisers and superplasticisers essentially contain ether lignosulphonate, naphthalene sulphonate, melamine sulphonate and polycarboxylate/polycarboxylic or mixtures thereof. Deforming agents and preservatives are added as minor components and auxiliaries. Active substance concentration lies between 10 and 40% by mass. The typical dosage of plasticisers lies between 0.2 and 0.5% by mass in relation to the cement weight. The typical dosage of superplasticisers lies between 0.4 and 2.0% by mass in relation to the cement weight.
The products covered by this EPD typically contain the following proportions by mass of constituent materials and auxiliaries referred to:
- Lignosulphonate*: max. 35%
- Naphthalene sulphonate*: max. 30%
- Melamine sulphonate*: max. 45%
- Polycarboxylate*: max. 35%
- Additives: max. 5%
- Water: approx. 55 - 75%
*Solid content

These volumes are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases.

Note: For companies to declare their products within the scope of this EPD it is not sufficient to simply comply with the product composition shown above. The application of this EPD is only possible for member companies of EFCA’s member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document. Small volumes (< 0.5% by mass) of biocides with functional chemical groups for example isothiazolinones or dioxahexane are used as preservatives in concrete admixtures during storage. More detailed information is available in the respective manufacturer’s documentation (e.g. product data sheets, safety data sheets).

Unless indicated on the safety data sheet, concrete admixtures do not contain any substances in concentrations of more than 0.1% which are included in the list of Substances of Very High Concern (SVHC) for inclusion in Annex XIV of the REACH regulation.
No flame retardants are used in concrete admixtures.

2.7 Manufacture
Concrete admixtures are usually manufactured by mixing ingredients together in batch mode and filling containers for dispatch. The process follows quality standards outlined in /EN 934-0:2001+A1:2005/.

2.8 Environment and health during manufacturing
As a general rule, no environmental or health protection measures other than those specified by law are necessary.

2.9 Product processing/Installation
During concrete manufacture, concrete admixtures are usually added along with the mixing water or included in premixed concrete.

2.10 Packaging
Reusable containers are, where practicable taken back by the manufacturer and redirected into the production circuit. Empty plastic or steel containers which can no longer be used are recyclable.

2.11 Condition of use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. Concrete admixtures make an essential contribution towards optimising the physical and chemical properties of concrete enhancing its performance, durability, economic value and sustainability.

2.12 Environment and health during use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. No relevant risks are known for water, air and soil if the products are used as designated.

2.13 Reference service life
Not relevant as this declaration relates to a preliminary product.

2.14 Extraordinary effects

Fire
Not relevant as this declaration relates to a preliminary product.

Water
Not relevant as this declaration relates to a preliminary product.

Mechanical destruction
Not relevant as this declaration relates to a preliminary product.

2.15 Re-use phase
Not relevant as this declaration relates to a preliminary product.

2.16 Disposal
Empty, dried containers are directed to the recycling process where practicable.

2.17 Further information
More information is available in the manufacturers’ product or safety data sheets on the manufacturers’ Web sites or on request.

An electronic version of this declaration is available at www.efca.info and www.bau-umwelt.com

3. LCA: Calculation rules

3.1 Declared Unit
This EPD refers to the declared unit of 1 kg concrete admixture with a density of 1-1.6 kg/l in accordance with the IBU PCR 07.2014 Part B for concrete admixtures. The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).

Depending on the application, a corresponding conversion factor such as the density to convert volumetric use to mass must be taken into consideration.

3.2 System boundary
Modules A1, A2 and A3 are taken into consideration in the LCA:

- A1 Production of preliminary products
- A2 Transport to the plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables and waste treatment

The Declaration is therefore “cradle-to-gate”.

3.3 Estimates and assumptions
For this EPD formulation and production data defined by EFCA were considered. Production waste was assumed to be disposed of to landfill without credits as a worst case.

An average of plastic containers and wooden pallets was considered in the LCA.

3.4 Cut-off criteria
All raw materials submitted for the formulations and production data were taken into consideration.

The manufacture of machinery, plant and other infrastructure required for production of the products under review was not taken into consideration in the LCA.

Transport of packaging materials is also excluded.

3.5 Background data
Data from the GaBi 6 data base was used as background data.

3.6 Data quality
Representative products were applied for this EPD and the product in the group displaying the highest environmental impact was selected for calculating the
LCA results. The data sets are no more than 4 years old. Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product. The data quality of the background data is considered to be good.

3.7 Period under review
Representative formulations were compiled by EFCA in 2011.

3.8 Allocation
No allocations were applied for production.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

In accordance with the IBU PCR 07.2014 Part A, no scenarios are indicated as only Modules A1-A3 are declared.
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport from the gate to the site</td>
<td>Assembly</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 kg plasticisers and superplasticisers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential</td>
<td>[kg CO₂-Eq.]</td>
<td>1.88E+0</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>[kg CFC11-Eq.]</td>
<td>2.30E-10</td>
</tr>
<tr>
<td>Acidification potential of land and water</td>
<td>[kg SO₂-Eq.]</td>
<td>2.92E-3</td>
</tr>
<tr>
<td>Eutrophication potential</td>
<td>[kg (PO₄³⁻)-Eq.]</td>
<td>1.03E-10</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone photochemical oxidants</td>
<td>[kg ethene-Eq.]</td>
<td>3.12E-4</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil resources</td>
<td>[kg Sb-Eq.]</td>
<td>1.10E-6</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources</td>
<td>[MJ]</td>
<td>2.91E+1</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - RESOURCE USE: 1 kg plasticisers and superplasticisers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>1.51E+0</td>
</tr>
<tr>
<td>Renewable primary energy resources as material utilization</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>[MJ]</td>
<td>1.51E+0</td>
</tr>
<tr>
<td>Non-renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>2.66E+1</td>
</tr>
<tr>
<td>Non-renewable primary energy as material utilization</td>
<td>[MJ]</td>
<td>4.82E+0</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>[MJ]</td>
<td>3.14E+1</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of net fresh water</td>
<td>[m³]</td>
<td>6.04E-3</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg plasticisers and superplasticisers

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>[kg]</td>
<td>5.17E-6</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>[kg]</td>
<td>2.56E-2</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>[kg]</td>
<td>9.00E-4</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

When considering upstream production and transport of pre-products as well as manufacturing of the concrete admixture (modules A1-A3), the main driver of impacts in all categories is production of pre-products (module A1). In the categories of ozone depletion potential (ODP), renewable primary energy demand (PERT), radioactive waste, and acidification potential (AP) a fairly important contributor is the European electricity grid mix, which also has minor influence on photochemical ozone creation potential (POCP). The plastic packaging of the concrete admixture also makes a minor contribution, especially to abiotic depletion potential for fossil resources (ADPF), photochemical ozone creation potential (POCP), and non-renewable primary energy demand (PENRT), as do wooden pallets (in the case of PERT). Generally, treatment of production waste has negligible influence on results in all impact categories for this product type.
7. Requisite evidence

As this involves a declaration of preliminary products, special tests and evidence within the framework of drawing up this Model Environmental Product Declaration have not been carried out or provided.

8. References

Institut Bauen und Umwelt
Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);
www.ibu-epd.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

CPR

EN ISO 9001:2008
Quality management systems – Requirements (ISO 9001.2008)

GaBi 6 software & documentation
Data base for Life Cycle Engineering LBP, University of Stuttgart and thinkstep AG, documentation of GaBi 6 data sets http://documentation.gabi-software.com/, 2014

EN 196-2:2013
Test methods for cement – Part 2: Chemical analysis of cement

EN 206:2013
Concrete – Part 1: Specification, performance, production and conformity

EN 480-1:2014
Admixtures for concrete, mortar and grout – Test methods – Part 1: Reference concrete and reference mortar for testing

EN 480-2:2006
Admixtures for concrete, mortar and grout – Test methods – Part 2: Determination of setting time

EN 480-4:2005
Admixtures for concrete, mortar and grout – Test methods – Part 4: Determination of bleeding of concrete

EN 480-5:2005

Admixtures for concrete, mortar and grout – Test methods – Part 5: Determination of capillary absorption

EN 480-6:2005
Admixtures for concrete, mortar and grout – Test methods – Part 6: Infra red analysis

EN 480-8:2012
Admixtures for concrete, mortar and grout – Test methods – Part 8: Determination of the conventional dry material content

EN 480-10:2009
Admixtures for concrete, mortar and grout – Test methods – Part 10: Determination of water-soluble chloride content

EN 480-11:2005
Admixtures for concrete, mortar and grout – Test methods - Part 11: Determination of air void characteristics in hardened concrete

EN 480-12:2005
Admixtures for concrete, mortar and grout – Test methods – Part 12: Determination of the alkali content of admixtures

EN 480-14:2006
Admixtures for concrete, mortar and grout – Test methods – Part 14: Determination of the effect on corrosion susceptibility of reinforcing steel by potentiostatic electro-chemical test

EN 934-1:2008
Admixtures for concrete, mortar and grout – Part 1: Common aspects

Admixtures for concrete, mortar and grout – Part 2: Concrete admixtures – Definitions, requirements, conformity, marking and labelling

EN 934-5:2007
Admixtures for concrete, mortar and grout – Part 5: Admixtures for sprayed concrete – Definitions, requirements, conformity, marking and labelling

EN 934-6:2001+A1:2005
Admixtures for concrete, mortar and grout – Part 6: Sampling, conformity control and evaluation of conformity

EN 12350-2:2009
Testing fresh concrete – Part 2: Slump test

EN 12390-3:2009
Testing hardened concrete – Part 3: Compressive strength of test specimens
EN 12350-5:2009
Testing fresh concrete – Part 5: Flow table test

EN 12350-7:2009
Testing fresh concrete – Part 7: Air content – Pressure methods

EN 14487-1:2005
Sprayed concrete – Part 1: Definitions, specifications and conformity

EWC/AVV waste code
Directive governing introduction of the European Waste Catalogue
http://www.ngs-mbh.de/zs/eak.html

ISO 758:1976
Liquid chemical products for industrial purposes; Determination of density at 20 °C

ISO 4316:1977
Surface active agents; Determination of the pH value of aqueous solutions; Potentiometric method

PCR Part A

PCR Part B
Product Category Rules for Construction Products, Part B: Requirements on the EPD for concrete admixtures, 2014-07

REACH Directive
<table>
<thead>
<tr>
<th>Publisher</th>
<th>Tel</th>
<th>+49 (0)30 3087748-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Bauen und Umwelt e.V.</td>
<td>Fax</td>
<td>+49 (0)30 3087748-29</td>
</tr>
<tr>
<td>Panoramastr. 1</td>
<td>Mail</td>
<td>info@ibu-epd.com</td>
</tr>
<tr>
<td>10178 Berlin</td>
<td>Web</td>
<td>www.ibu-epd.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programme holder</th>
<th>Tel</th>
<th>+49 (0)30 - 3087748-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut Bauen und Umwelt e.V.</td>
<td>Fax</td>
<td>+49 (0)30 - 3087748-29</td>
</tr>
<tr>
<td>Panoramastr 1</td>
<td>Mail</td>
<td>info@ibu-epd.com</td>
</tr>
<tr>
<td>10178 Berlin</td>
<td>Web</td>
<td>www.ibu-epd.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Author of the Life Cycle Assessment</th>
<th>Tel</th>
<th>+49 (0)711-341817-0</th>
</tr>
</thead>
<tbody>
<tr>
<td>thinkstep AG</td>
<td>Fax</td>
<td>+49 (0)711-341817-25</td>
</tr>
<tr>
<td>Hauptstr. 111 - 113</td>
<td>Mail</td>
<td>info@thinkstep.com</td>
</tr>
<tr>
<td>707711 Leinfelden-Echterdingen</td>
<td>Web</td>
<td>www.thinkstep.com</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Owner of the Declaration</th>
<th>Tel</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>European Federation of Concrete Admixtures Associations Ltd. (EFCA)</td>
<td>Fax</td>
<td>-</td>
</tr>
<tr>
<td>Radius House, Clarendon Road 51</td>
<td>Mail</td>
<td>secretary@efca.info</td>
</tr>
<tr>
<td>WD17 1HP Watford, Herts</td>
<td>Web</td>
<td>www.efca.info</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>