Declaration of conformity for products with Model EPDs

The European Federation of Concrete Admixtures Associations (EFCA) has developed Model Environmental Product Declarations (Model EPD) for six categories of admixtures. These model EPDs have been verified as being in compliance with EN 15804 and ISO 14025 and published by the independent Institute for Construction and Environment in Germany (IBU). Additionally, the Model EPDs are based on the established Product Category Rules (PCR) for Concrete Admixtures which are currently the only generic PCRs that exist for this product type. The Model EPDs are also available for download from the EFCA website.

Sika is a member of Fachverband Schweizerischer Hersteller von Betonzusatzmitteln (FSHBZ) which is a national association member of EFCA. This gives the company the right to declare that a specific EFCA Model EPD applies to the named products listed below, by using an IBU-approved guideline procedure, to confirm that any particular product is within the scope of a specific product category Model EPD. This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for LEED v4 sustainability assessment of the construction products and construction projects, in which they are used.

EFCA Model EPD: **Air entrainers - EPD-EFC-20150086-IAG1-EN**

Product Trade Name:
Sika® Air-260

Sika Corporation

Ondrej Masek
Vice President Concrete Technology

SIKA CORPORATION
201 Polito Avenue · Lyndhurst · NJ 07071 · USA
Phone: +1 201 933 8800 · Fax: +1 201 933 6225 · www.usa.sika.com
ENVIRONMENTAL PRODUCT DECLARATION
as per ISO 14025 and EN 15804

Owner of the Declaration | European Federation of Concrete Admixtures Associations Ltd. (EFCA)
Programme holder | Institut Bauen und Umwelt e.V. (IBU)
Publisher | Institut Bauen und Umwelt e.V. (IBU)
Declaration number | EPD-EFC-20150086-IAG1-EN
ECO EPD Ref. No. | ECO-00000380
Issue date | 14/09/2015
Valid to | 13/09/2020

Concrete admixtures – Air entrainers
European Federation of Concrete Admixtures Associations Ltd. (EFCA)

www.ibu-epd.com / https://epd-online.com
1. General Information

European Federation of Concrete Admixtures Associations Ltd. (EFCA)

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramastr. 1
10178 Berlin
Germany

Declaration number
EPD-EFC-20150086-IAG1-EN

This Declaration is based on the Product Category Rules:
Concrete admixtures, 07.2014
(PCR tested and approved by the SVR)

Issue date
14/09/2015

Valid to
13/09/2020

Concrete admixtures – air entrainers

Owner of the Declaration
European Federation of Concrete Admixtures Associations Ltd. (EFCA)
Radius House, 51 Clarendon Road, Watford, Herts, WD17 1HP United Kingdom

Declared product / Declared unit
1 kg of air entrainer, density: 1 - 1.6 kg/l

Scope:
This validated Declaration entitles EFCA to bear the symbol of the Institut Bauen und Umwelt e.V. It exclusively applies for the product groups referred to for plants operated in Belgium, France, Germany, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, Turkey and the United Kingdom by companies that are members of EFCA National Associations in these countries and for a period of five years from the date of issue. It involves a Model EPD where the product displaying the highest environmental impact in a group was selected for calculating the Life Cycle Assessment. Please refer to the EFCA website www.efca.info for a list of National Associations.

The application of this EPD is only possible for member companies of EFCA’s member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification
The CEN Norm /EN 15804/ serves as the core PCR

Independent verification of the declaration according to /ISO 14025/

☐ internally ☒ externally

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann (Managing Director IBU)

Matthias Schulz
(Independent verifier appointed by SVR)

2. Product

2.1 Product description
Admixtures are liquid or powdery agents that are introduced in small amounts (< 5% by mass of the cement content) to concrete while it is being mixed and that enhance the properties of the fresh and/or hardened concrete.

Air entrainers are admixtures which generate during the mixing process a defined quantity of small, uniformly distributed air voids that remain in the concrete after hardening.

The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).

2.2 Application
Concrete admixtures are used as constituent materials for the production of concrete, mortar and grout (unreinforced concrete, reinforced and prestressed concrete, site-mixed and ready-mixed concrete, precast concrete). Their application should be in line with the manufacturer’s technical documents and Declaration of Performance.

2.3 Technical Data
Air entrainers must comply with the general requirements of /EN 934-1:2008/ and the additional requirements of /EN 934-2:2009+A1:2012/.

2.6 Base materials / Ancillary materials

Air entrainers contain surface-active substances, referred to as tensides. Soaps from natural resins or synthetic nonionic and ionic tensides (e.g. alkyl polyglycol ether, alkyl sulphates and alkyl sulphonates) as well as preservatives are added as minor components and auxiliaries.

The active substance level of air entrainers usually used in Europe lies between 0.5 and 5% by mass (concentrates up to 20% by mass) for doses of 0.05 to 1.0% by mass in relation to the cement weight. The products covered by this EPD typically contain the following proportions by mass of constituent materials and auxiliaries referred to:

- **Tensides**: max. 13%
- **Natural resins**: max. 13%
- **Fatty acids**: max. 5%
- **Additives**: max. 3%
- **Water**: approx. 74-97%

These values are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases.

Note: For companies to declare their products within the scope of this EPD it is not sufficient to simply comply with the product composition shown above. The application of this EPD is only possible for member companies of EFCA’s member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document. Small volumes (< 0.5% by mass) of biocides with functional chemical groups for example isothiazolinones or dioxahexane are used as preservatives in concrete admixtures during storage. More detailed information is available in the respective manufacturer’s documentation (e.g. product data sheets, safety data sheets).

2.7 Manufacture

Concrete admixtures are usually manufactured by mixing ingredients together in batch mode and filling containers for dispatch. The process follows quality standards outlined in /EN 934-6:2001+A1:2005/.

2.8 Environment and health during manufacturing

As a general rule, no environmental or health protection measures other than those specified by law are necessary.

2.9 Product processing/Installation

During concrete manufacture, concrete admixtures are usually added along with the mixing water or included in premixed concrete. Health and safety measures (eye protection, hand protection, possibly respiratory equipment and body protection) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site.

2.10 Packaging

Reusable containers are, where practicable taken back by the manufacturer and redirected into the production process.
circuit. Empty plastic or steel containers which can no longer be used are recyclable. Wooden reusable pallets are, where practicable taken back by the manufacturer or building material trader who returns them to the building product manufacturer redirecting them into the production process.

2.11 Condition of use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. Concrete admixtures make an essential contribution towards optimising the physical and chemical properties of concrete enhancing its performance, durability, economic value and sustainability.

2.12 Environment and health during use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. No relevant risks are known for water, air and soil if the products are used as designated.

2.13 Reference service life
Not relevant as this declaration relates to a preliminary product.

2.14 Extraordinary effects

3. LCA: Calculation rules

3.1 Declared Unit
This EPD refers to the declared unit of 1 kg concrete admixture with a density of 1.1-1.6 kg/l in accordance with the IBU PCR 07.2014 Part B for concrete admixtures. The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).
Depending on the application, a corresponding conversion factor such as the density to convert volumetric use to mass must be taken into consideration.

3.2 System boundary
Modules A1, A2 and A3 are taken into consideration in the LCA:
- A1 Production of preliminary products
- A2 Transport to the plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables and waste treatment
The Declaration is therefore “cradle-to-gate”.

3.3 Estimates and assumptions
For this EPD formulation and production data defined by EFCA were considered. Production waste was assumed to be disposed of to landfill without credits as a worst case. An average of steel and plastic containers, and wooden pallets was considered in the LCA.

3.4 Cut-off criteria
All raw materials submitted for the formulations and production data were taken into consideration. The manufacture of machinery, plant and other infrastructure required for production of the products under review was not taken into consideration in the LCA.

3.5 Background data
Data from the GaBi 6 data base was used as background data.

3.6 Data quality
Representative products were applied for this EPD and the product in the group displaying the highest environmental impact was selected for calculating the LCA results. The data sets are no more than 4 years old. Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product. The data quality of the background data is considered to be good.

3.7 Period under review
Representative formulations were compiled by EFCA in 2011.

3.8 Allocation
No allocations were applied for production.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

Transport of packaging materials is also excluded.
4. LCA: Scenarios and additional technical information

In accordance with the IBU PCR 07.2014 Part A, no scenarios are indicated as only Modules A1-A3 are declared.
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material</td>
<td>A1</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Supply</td>
<td>A2</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transport</td>
<td>A3</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>A4</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Transport from the gate to the site</td>
<td>A5</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Assembly</td>
<td>B1</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Use</td>
<td>B2</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Maintenance</td>
<td>B3</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Repair</td>
<td>B4</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Replacement</td>
<td>B5</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Refurbishment</td>
<td>B6</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Use</td>
<td>B7</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Operational energy use</td>
<td>C1</td>
<td>C2</td>
<td>C3</td>
<td>C4</td>
</tr>
<tr>
<td>Operational water use</td>
<td>C3</td>
<td>C4</td>
<td>C5</td>
<td>C6</td>
</tr>
<tr>
<td>Operational energy demand</td>
<td>C5</td>
<td>C6</td>
<td>C7</td>
<td>C8</td>
</tr>
<tr>
<td>Operational water demand</td>
<td>C7</td>
<td>C8</td>
<td>C9</td>
<td>C10</td>
</tr>
<tr>
<td>Operational energy decommission</td>
<td>C9</td>
<td>C10</td>
<td>C11</td>
<td>C12</td>
</tr>
<tr>
<td>Operational water decommission</td>
<td>C10</td>
<td>C12</td>
<td>C13</td>
<td>C14</td>
</tr>
<tr>
<td>Transport</td>
<td>D1</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Waste processing</td>
<td>D2</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Disposal</td>
<td>D3</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
<tr>
<td>Reuse/Recovery potential</td>
<td>D4</td>
<td>MND</td>
<td>MND</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 kg air entrainer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential</td>
<td>[kg CO$_2$-Eq.]</td>
<td>5.27E-1</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>[kg CFC11-Eq.]</td>
<td>7.56E-11</td>
</tr>
<tr>
<td>Acidification potential of land and water</td>
<td>[kg SO$_2$-Eq.]</td>
<td>1.30E-3</td>
</tr>
<tr>
<td>Eutrophication potential</td>
<td>[kg PO$_4$-3-Eq.]</td>
<td>1.43E-4</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil fuels</td>
<td>[kg Sb-Eq.]</td>
<td>3.66E-7</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources</td>
<td>[MJ]</td>
<td>1.33E+1</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - RESOURCE USE: 1 kg air entrainer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>8.14E-1</td>
</tr>
<tr>
<td>Renewable primary energy resources as material utilization</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>[MJ]</td>
<td>8.14E-1</td>
</tr>
<tr>
<td>Non-renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>1.42E+1</td>
</tr>
<tr>
<td>Non-renewable primary energy as material utilization</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>[MJ]</td>
<td>1.42E+1</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Use of net fresh water</td>
<td>[m³]</td>
<td>4.13E-3</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg air entrainer

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>[kg]</td>
<td>2.47E-6</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>[kg]</td>
<td>1.96E-2</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>[kg]</td>
<td>3.66E-4</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>[kg]</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>[MJ]</td>
<td>0.00</td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

When considering upstream production and transport of pre-products as well as manufacturing of the concrete admixture (modules A1-A3), the main driver of impacts in almost all categories is production of pre-products (module A1).

For ozone depletion potential (ODP), the substantial contributor to impacts is the European electricity grid mix, which also is a very important contributor on renewable primary energy demand (PERT), radioactive waste, and acidification potential (AP). Another relevant contributor to the cradle-to-gate results, in the category of abiotic depletion potential elements (ADPE), is the steel sheet used as a packaging material.

The plastic packaging of the concrete admixture also makes some contribution (especially to abiotic depletion potential for fossil resources (ADPF), non-renewable primary energy demand (PENRT), and acidification potential (AP)) as do wooden pallets (to PERT).

Treatment of production waste has negligible contribution to impacts in all categories with the exception of eutrophication potential (EP), where landfilling of production waste has some influence.
7. Requisite evidence

As this involves a declaration of preliminary products, special tests and evidence within the framework of drawing up this Model Environmental Product Declaration have not been carried out or provided.

8. References

Institut Bauen und Umwelt
Institut Bauen und Umwelt e.V., Berlin(pub.): Generation of Environmental Product Declarations (EPDs);
www.ibu-epd.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

CPR

EN ISO 9001:2008
Quality management systems – Requirements (ISO 9001.2008)

GaBi 6 software & documentation
Data base for Life Cycle Engineering LBP, University of Stuttgart and thinkstep AG, documentation of GaBi 6 data sets http://documentation.gabi-software.com/, 2014

EN 196-2:2013
Test methods for cement – Part 2: Chemical analysis of cement

EN 206:2013
Concrete – Part 1: Specification, performance, production and conformity

EN 480-1:2014
Admixtures for concrete, mortar and grout – Test methods – Part 1: Reference concrete and reference mortar for testing

EN 480-2:2006
Admixtures for concrete, mortar and grout – Test methods – Part 2: Determination of setting time

EN 480-4:2005
Admixtures for concrete, mortar and grout – Test methods – Part 4: Determination of bleeding of concrete

EN 480-5:2005
Admixtures for concrete, mortar and grout – Test methods – Part 5: Determination of capillary absorption

EN 480-6:2005
Admixtures for concrete, mortar and grout – Test methods – Part 6: Infra red analysis

EN 480-8:2012
Admixtures for concrete, mortar and grout – Test methods – Part 8: Determination of the conventional dry material content

EN 480-10:2009
Admixtures for concrete, mortar and grout – Test methods – Part 10: Determination of water-soluble chloride content

EN 480-11:2005
Admixtures for concrete, mortar and grout – Test methods - Part 11: Determination of air void characteristics in hardened concrete

EN 480-12:2005
Admixtures for concrete, mortar and grout – Test methods – Part 12: Determination of the alkali content of admixtures

EN 480-14:2006
Admixtures for concrete, mortar and grout – Test methods – Part 14: Determination of the effect on corrosion susceptibility of reinforcing steel by potentiostatic electro-chemical test

EN 934-1:2008
Admixtures for concrete, mortar and grout – Part 1: Common aspects

Admixtures for concrete, mortar and grout – Part 2: Concrete admixtures – Definitions, requirements, conformity, marking and labelling

EN 934-5:2007
Admixtures for concrete, mortar and grout – Part 5: Admixtures for sprayed concrete – Definitions, requirements, conformity, marking and labelling

EN 934-6:2001+A1:2005
Admixtures for concrete, mortar and grout – Part 6: Sampling, conformity control and evaluation of conformity

EN 12350-2:2009
Testing fresh concrete – Part 2: Slump test

EN 12390-3:2009
Testing hardened concrete – Part 3: Compressive strength of test specimens
EN 12350-5:2009
Testing fresh concrete – Part 5: Flow table test

EN 12350-7:2009
Testing fresh concrete – Part 7: Air content – Pressure methods

EN 14487-1:2005
Sprayed concrete – Part 1: Definitions, specifications and conformity

EWC/AVV waste code
Directive governing introduction of the European Waste Catalogue
http://www.ngs-mbh.de/zs/eak.html

ISO 758:1976
Liquid chemical products for industrial purposes; Determination of density at 20 °C

ISO 4316:1977
Surface active agents; Determination of the pH value of aqueous solutions; Potentiometric method

PCR Part A

PCR Part B
Product Category Rules for Construction Products, Part B: Requirements on the EPD for concrete admixtures, 2014-07

REACH Directive