Declaration of conformity for products with Model EPDs

The European Federation of Concrete Admixtures Associations (EFCA) has developed Model Environmental Product Declarations (Model EPD) for six categories of admixtures. These model EPDs have been verified as being in compliance with EN 15804 and ISO 14025 and published by the independent Institute for Construction and Environment in Germany (IBU). Additionally, the Model EPDs are based on the established Product Category Rules (PCR) for Concrete Admixtures which are currently the only generic PCRs that exist for this product type. The Model EPDs are also available for download from the EFCA website.

Sika is a member of Fachverband Schweizerischer Hersteller von Betonzusatzmitteln (FSHBZ) which is a national association member of EFCA. This gives the company the right to declare that a specific EFCA Model EPD applies to the named products listed below, by using an IBU-approved guideline procedure, to confirm that any particular product is within the scope of a specific product category Model EPD. This means that the life cycle assessment data and other content of the Model EPD apply to these named products and may be used for LEED v4 sustainability assessment of the construction products and construction projects, in which they are used.

EFCA Model EPD: Set Accelerators - EPD-EFC-20150087-IAG1-EN

Product Trade Name: SikaSet® NC-4

Sika Corporation

Ondrej Masek
Vice President Concrete Technology

SIKA CORPORATION
201 Polito Avenue · Lyndhurst · NJ 07071 · USA
Phone: +1 201 933 8800 · Fax: +1 201 933 6225 · www.usa.sika.com
ENVIRONMENTAL PRODUCT DECLARATION
as per ISO 14025 and EN 15804

Owner of the Declaration | European Federation of Concrete Admixtures Associations Ltd. (EFCA)
Programme holder | Institut Bauen und Umwelt e.V. (IBU)
Publisher | Institut Bauen und Umwelt e.V. (IBU)
Declaration number | EPD-EFC-20150087-IAG1-EN
ECO EPD Ref. No. | ECO-00000381
Issue date | 14/09/2015
Valid to | 13/09/2020

Concrete admixtures – Set Accelerators
European Federation of Concrete Admixtures Associations Ltd. (EFCA)

www.ibu-epd.com / https://epd-online.com
1. General Information

European Federation of Concrete Admixtures Associations Ltd. (EFCA)

Programme holder
IBU - Institut Bauen und Umwelt e.V.
Panoramast. 1
10178 Berlin
Germany

Declarant

Declaration number
EPD-EFC-20150087-IA21-EN

This Declaration is based on the Product Category Rules
Concrete admixtures, 07.2014
(PCR tested and approved by the SVR)

Issue date
14/09/2015

Valid to
13/09/2020

Owner of the Declaration
European Federation of Concrete Admixtures Associations Ltd. (EFCA)
Radius House, 51 Clarendon Road, Watford, Herts, WD17 1HP United Kingdom

Declared product / Declared unit
1 kg of set accelerators, density: 1 - 1.6 kg/l

Scope:
This validated Declaration entitles EFCA to bear the symbol of the Institut Bauen und Umwelt e.V. It exclusively applies for the product groups referred to for plants operated in Belgium, France, Germany, Italy, Netherlands, Norway, Spain, Sweden, Switzerland, Turkey and the United Kingdom by companies that are members of EFCA National Associations in these countries and for a period of five years from the date of issue. It involves a Model EPD where the product displaying the highest environmental impact in a group was selected for calculating the Life Cycle Assessment. Please refer to the EFCA website www.efca.info for a list of National Associations. The application of this EPD is only possible for member companies of EFCA’s member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document. The owner of the declaration shall be liable for the underlying information and evidence; the IBU shall not be liable with respect to manufacturer information, life cycle assessment data and evidences.

Verification

The CEN Norm /EN 15804/ serves as the core PCR

Independent verification of the declaration according to /ISO 14025/

[] internally [x] externally

Prof. Dr.-Ing. Horst J. Bossenmayer
(President of Institut Bauen und Umwelt e.V.)

Dr. Burkhard Lehmann
(Managing Director IBU)

Matthias Schulz
(Independent verifier appointed by SVR)

2. Product

2.1 Product description
Admixtures are liquid or powdery agents that are introduced in small amounts (< 5% by mass of the cement content) to concrete while it is being mixed and that enhance the properties of the fresh and/or hardened concrete.

Set accelerators in accordance with /EN 934-2:2009+ A1:2012/ are admixtures which reduce the time required by the mixture to transfer from a plastic to a solid state.

Set accelerators for shotcrete in accordance with /EN 934-5:2007/ are admixtures which permit very early setting of the shotcrete and, unlike products in line with /EN 934-2:2009+ A1:2012/ can be added to concrete with max. 12% by mass, whereby set accelerators for shotcrete and so-called non-alkali set accelerators with a maximum alkali content of 1.0% (indicated as a Na₂O equivalent) (in relation to the admixture mass) are specified for shotcrete.

The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario).

2.2 Application
Concrete admixtures are used as constituent materials for the production of concrete, mortar and grout (unreinforced concrete, reinforced and prestressed concrete, site-mixed and ready-mixed concrete, precast concrete). Their application should be in line with the manufacturer’s technical documents and Declaration of Performance.
2.3 Technical Data

Constructional data

<table>
<thead>
<tr>
<th>Name</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density /ISO 758/</td>
<td>1 - 1.6</td>
<td>g/ml</td>
</tr>
<tr>
<td>Solids content /EN 480-8/</td>
<td>-¹</td>
<td>M.-%</td>
</tr>
<tr>
<td>pH value /ISO 4316/</td>
<td>-¹</td>
<td>-</td>
</tr>
<tr>
<td>Chloride content /EN 480-10/</td>
<td>Maximum value to be declared by the manufacturer</td>
<td>M.-%</td>
</tr>
<tr>
<td>Alkali content /EN 480-12/</td>
<td>Maximum value to be declared by the manufacturer</td>
<td>M.-%</td>
</tr>
<tr>
<td>Corrosion behavior /EN 934-1/; /EN 480-14/</td>
<td>-²</td>
<td>μ A/cm²</td>
</tr>
<tr>
<td>SiO₂ content /EN 192-2/</td>
<td>-²</td>
<td>M.-%</td>
</tr>
<tr>
<td>Air content of fresh concrete /EN 12350-7/</td>
<td>Test mix ≤ 2% by volume above control mix unless stated otherwise by the manufacturer</td>
<td>Vol.-%</td>
</tr>
<tr>
<td>Compressive strength /EN 12390-3/</td>
<td>-</td>
<td>N/mm²</td>
</tr>
<tr>
<td>Water reduction /EN 12350-2/; /EN 12350-5/ Plasticizer</td>
<td>-</td>
<td>mm</td>
</tr>
<tr>
<td>Increasing / maintaining of consistence /EN 12350-2/; /EN 12350-5/ Superplasticizer</td>
<td>-</td>
<td>mm</td>
</tr>
<tr>
<td>Setting time /EN 480-2/ Accelerator/Retarder</td>
<td>Start of setting process: At 20 °C: Test mixture ≥ 30 min. At 5 °C: Test mixture ≥ 60% of the control mixture Shotcrete accelerator: Start of setting pro cess: ≤ 10 min. End of setting pro cess: ≤ 60 min.</td>
<td>min</td>
</tr>
<tr>
<td>Air void Characteristics in hardened concrete /EN 480-11/ Air entrainer</td>
<td>-</td>
<td>mm</td>
</tr>
<tr>
<td>Capillary water absorption /EN 480-5/ Densifier</td>
<td>-</td>
<td>g/mm²</td>
</tr>
</tbody>
</table>

¹ Value will be made available to user on request
² No corrosion behaviour test is required for admixtures which only contain active substances in the list of approved substances to /EN 934-1/, Annex A.1 and in the list of declared substances to /EN 934-1/, Annex A.2.
³ Maximum value must only be indicated when SiO₂ percentage by mass > 5%
 - Details not relevant for this type of admixture

At 28 days: Test mix ≥ 75% of control mix
At 28 days: Test mix ≥ 90% of control mix
At 90 days: Test mix ≥ test mix at 28 days

Shotcrete accelerator:

At 90 days: Test mix ≥ 80% of control mix
At 28 days: Test mix ≥ control test mix at 28 days

2.4 Application rules

For the application and use of the products the respective national provisions apply.

2.5 Delivery status

Set accelerators are usually supplied in liquid, paste or powder form in containers made of steel or plastic. Typical container sizes are canisters containing approx. 25 kg, drums with approx. 200 kg or Intermediate Bulk Containers (IBC) with 1000 kg. The containers are shipped on wooden pallets. For larger applications, loose deliveries in tank trucks with a capacity in excess of 1 tonne are also used.

2.6 Base materials / Ancillary materials

The main raw materials used for set accelerators are aluminium sulphate, formates, fluorides, aluminates, amorphous aluminium hydroxide, carbonates, silicates and ethanolamines. These raw materials are used on their own or in mixtures, in powder form or in aqueous solutions or as dispersions or suspensions. Apart from the raw materials referred to above, nitrates, nitrites and thiocyanates are also used.

Active substance concentration lies between 10 and 100% by mass. The typical dosage volumes for use in concrete are between 1 and 3% by mass, in terms of the cement weight. Shotcrete accelerators are used in doses of 3 to 12% by mass in relation to the cement weight.

The products covered by this EPD typically contain the following proportions by mass of constituent materials and auxiliaries referred to:

- Aluminium sulphate*: max. 70%
- Formates*: max. 15%
- Aluminates*: max. 50%
- Amorphous aluminium hydroxides*: max. 20%
- Citrates*: max. 50%
- Silicates*: max. 2%
- Sulfates*: max. 10%
- Ethanolamines*: max. 10%
- Nitrates*: max. 20%
- Org. acids*: max. 10%
- Thiocyanates*: max. 25%
- Additives*: max. 5%

Water: approx. 30-90%

*Solid content

These volumes are average values and the composition of products complying with the EPD can deviate from these concentration levels in individual cases.

Note: For companies to declare their products within the scope of this EPD it is not sufficient to simply comply with the product composition shown above. The application of this EPD is only possible for...
member companies of EFCA’s member associations and only for specific formulations with a total score below the declared maximum score for a product group according to the associated guidance document. Small volumes (< 0.5% by mass) of biocides with functional chemical groups for example isothiazolinones or dioxahexane are used as preservatives in concrete admixtures during storage. More detailed information is available in the respective manufacturer's documentation (e.g. product data sheets, safety data sheets). Unless indicated on the safety data sheet, concrete admixtures do not contain any substances in concentrations of more than 0.1% which are included in the list of Substances of Very High Concern (SVHC) for inclusion in Annex XIV of the REACH regulation. No flame retardants are used in concrete admixtures.

2.7 Manufacture
Concrete admixtures are usually manufactured by mixing ingredients together in batch mode and filling containers for dispatch. The process follows quality standards outlined in /EN 934-6:2001+A1:2005/.

2.8 Environment and health during manufacturing
As a general rule, no environmental or health protection measures other than those specified by law are necessary.

2.9 Product processing/Installation
During concrete manufacture, concrete admixtures are usually added along with the mixing water or included in premixed concrete. Health and safety measures (eye protection, hand protection, possibly respiratory equipment and body protection) are to be taken and consistently adhered to in accordance with the information on the safety data sheet and conditions on site.

2.10 Packaging
Reusable containers are, where practicable taken back by the manufacturer and redirected into the production circuit. Empty plastic or steel containers which can no longer be used are recyclable. Wooden reusable pallets are, where practicable taken back by the manufacturer or building material trader who returns them to the building product manufacturer redirecting them into the production process.

2.11 Condition of use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. Concrete admixtures make an essential contribution towards optimising the physical and chemical properties of concrete enhancing its performance, durability, economic value and sustainability.

2.12 Environment and health during use
During the use phase, concrete admixtures are firmly bound into the cement matrix in hardened concrete. No relevant risks are known for water, air and soil if the products are used as designated.

2.13 Reference service life
Not relevant as this declaration relates to a preliminary product.

2.14 Extraordinary effects
Fire
Not relevant as this declaration relates to a preliminary product.

Water
Not relevant as this declaration relates to a preliminary product.

Mechanical destruction
Not relevant as this declaration relates to a preliminary product.

2.15 Re-use phase
Not relevant as this declaration relates to a preliminary product.

2.16 Disposal
Empty, dried containers are directed to the recycling process where practicable. Residue must be directed to proper waste disposal taking consideration of local guidelines.

2.17 Further information
More information is available in the manufacturers’ product or safety data sheets on the manufacturers’ Web sites or on request. An electronic version of this declaration is available at www.efca.info and www.bau-umwelt.de

3. LCA: Calculation rules

3.1 Declared Unit
This EPD refers to the declared unit of 1 kg concrete admixture with a density of 1-1.6 kg/l in accordance with the IBU PCR 07.2014 Part B for concrete admixtures. The results of the Life Cycle Assessment provided in this declaration have been selected from the product with the highest environmental impact (worst-case scenario). Depending on the application, a corresponding conversion factor such as the density to convert volumetric use to mass must be taken into consideration.

3.2 System boundary
Modules A1, A2 and A3 are taken into consideration in the LCA:
- A1 Production of preliminary products
- A2 Transport to the plant
- A3 Production incl. provision of energy, production of packaging as well as auxiliaries and consumables and waste treatment
The Declaration is therefore "cradle-to-gate".

3.3 Estimates and assumptions
For this EPD formulation and production data defined by EFCA were considered. Production waste was assumed to be disposed of to landfill without credits as a worst case. An average of plastic containers and wooden pallets was considered in the LCA.

3.4 Cut-off criteria
All raw materials submitted for the formulations and production data were taken into consideration.
The manufacture of machinery, plant and other infrastructure required for production of the products under review was not taken into consideration in the LCA. Transport of packaging materials is also excluded.

3.5 Background data
Data from the GaBi 6 data base was used as background data.

3.6 Data quality
Representative products were applied for this EPD and the product in the group displaying the highest environmental impact was selected for calculating the LCA results. The data sets are no more than 4 years old. Production data and packaging are based on details provided by the manufacturer. The formulation used for evaluation refers to a specific product.

The data quality of the background data is considered to be good.

3.7 Period under review
Representative formulations were compiled by EFCA in 2011.

3.8 Allocation
No allocations were applied for production.

3.9 Comparability
Basically, a comparison or an evaluation of EPD data is only possible if all the data sets to be compared were created according to /EN 15804/ and the building context, respectively the product-specific characteristics of performance, are taken into account.

4. LCA: Scenarios and additional technical information

In accordance with the IBU PCR 07.2014 Part A, no scenarios are indicated as only Modules A1-A3 are declared.
5. LCA: Results

DESCRIPTION OF THE SYSTEM BOUNDARY (X = INCLUDED IN LCA; MND = MODULE NOT DECLARED)

<table>
<thead>
<tr>
<th>PRODUCT STAGE</th>
<th>CONSTRUCTION PROCESS STAGE</th>
<th>USE STAGE</th>
<th>END OF LIFE STAGE</th>
<th>BENEFITS AND LOADS BEYOND THE SYSTEM BOUNDARIES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw material supply</td>
<td>Transport</td>
<td>Manufacturing</td>
<td>Transport from the gate to the site</td>
<td>Assembly</td>
</tr>
<tr>
<td>A1</td>
<td>A2</td>
<td>A3</td>
<td>A4</td>
<td>A5</td>
</tr>
<tr>
<td>X</td>
<td>X</td>
<td>X</td>
<td>MND</td>
<td>MND</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - ENVIRONMENTAL IMPACT: 1 kg set accelerator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global warming potential</td>
<td>[kg CO$_2$-Eq.]</td>
<td>1.33E+0</td>
</tr>
<tr>
<td>Depletion potential of the stratospheric ozone layer</td>
<td>[kg CFC11-Eq.]</td>
<td>1.80E-10</td>
</tr>
<tr>
<td>Acidification potential of land and water</td>
<td>[kg SO$_2$-Eq.]</td>
<td>2.56E-3</td>
</tr>
<tr>
<td>Eutrophication potential</td>
<td>[kg (PO$_4$)$_3$-Eq.]</td>
<td>3.95E-4</td>
</tr>
<tr>
<td>Formation potential of tropospheric ozone photochemical oxidants</td>
<td>[kg ethene-Eq.]</td>
<td>5.31E-7</td>
</tr>
<tr>
<td>Abiotic depletion potential for non-fossil resources</td>
<td>[kg Sb-Eq.]</td>
<td>2.80E-1</td>
</tr>
<tr>
<td>Abiotic depletion potential for fossil resources</td>
<td>[MJ]</td>
<td>7.73E-3</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA - RESOURCE USE: 1 kg set accelerator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>1.02E+0</td>
</tr>
<tr>
<td>Renewable primary energy resources as material utilization</td>
<td>[MJ]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Total use of renewable primary energy resources</td>
<td>[MJ]</td>
<td>1.02E+0</td>
</tr>
<tr>
<td>Non-renewable primary energy as energy carrier</td>
<td>[MJ]</td>
<td>2.21E+1</td>
</tr>
<tr>
<td>Non-renewable primary energy as material utilization</td>
<td>[MJ]</td>
<td>7.81E+0</td>
</tr>
<tr>
<td>Total use of non-renewable primary energy resources</td>
<td>[MJ]</td>
<td>2.97E+1</td>
</tr>
<tr>
<td>Use of secondary material</td>
<td>[kg]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Use of renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Use of non-renewable secondary fuels</td>
<td>[MJ]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Use of net fresh water</td>
<td>[m³]</td>
<td>7.73E-3</td>
</tr>
</tbody>
</table>

RESULTS OF THE LCA – OUTPUT FLOWS AND WASTE CATEGORIES: 1 kg set accelerator

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>A1-A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazardous waste disposed</td>
<td>[kg]</td>
<td>2.44E-5</td>
</tr>
<tr>
<td>Non-hazardous waste disposed</td>
<td>[kg]</td>
<td>2.20E-2</td>
</tr>
<tr>
<td>Radioactive waste disposed</td>
<td>[kg]</td>
<td>6.98E-4</td>
</tr>
<tr>
<td>Components for re-use</td>
<td>[kg]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Materials for recycling</td>
<td>[kg]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Materials for energy recovery</td>
<td>[kg]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Exported electrical energy</td>
<td>[MJ]</td>
<td>0.00E+0</td>
</tr>
<tr>
<td>Exported thermal energy</td>
<td>[MJ]</td>
<td>0.00E+0</td>
</tr>
</tbody>
</table>

6. LCA: Interpretation

When considering upstream production and transport of pre-products as well as manufacturing of the concrete admixture (modules A1-A3), the main driver of impacts in almost all categories is production of pre-products (module A1). In the categories of ozone depletion potential (ODP), renewable primary energy demand (PERT), and radioactive waste a very important contributor is the European electricity grid mix, which also has some influence on acidification potential (AP). The European electricity grid mix has also minor influence on global warming potential (GWP) and photochemical ozone creation potential (POCP).

Treatment of production waste has negligible contribution to impacts in all categories except eutrophication potential (EP), where landfilling of production waste has a minor influence.

7. Requisite evidence

As this involves a declaration of preliminary products, special tests and evidence within the framework of drawing up this Model Environmental Product Declaration have not been carried out or provided.
Institut Bauen und Umwelt
Institut Bauen und Umwelt e.V., Berlin (pub.):
Generation of Environmental Product Declarations (EPDs);
www.ibu-epd.de

ISO 14025
DIN EN ISO 14025:2011-10: Environmental labels and declarations — Type III environmental declarations — Principles and procedures

EN 15804
EN 15804:2012-04+A1 2013: Sustainability of construction works — Environmental Product Declarations — Core rules for the product category of construction products

CPR

EN ISO 9001:2008
Quality management systems — Requirements (ISO 9001:2008)

GaBi 6 software & documentation
Data base for Life Cycle Engineering LBP, University of Stuttgart and thinkstep AG, documentation of GaBi 6 data sets http://documentation.gabi-software.com/, 2014

EN 196-2:2013
Test methods for cement – Part 2: Chemical analysis of cement

EN 206:2013
Concrete – Part 1: Specification, performance, production and conformity

EN 480-1:2014
Admixtures for concrete, mortar and grout — Test methods — Part 1: Reference concrete and reference mortar for testing

EN 480-2:2006
Admixtures for concrete, mortar and grout — Test methods — Part 2: Determination of setting time

EN 480-4:2005
Admixtures for concrete, mortar and grout — Test methods — Part 4: Determination of bleeding of concrete

EN 480-5:2005
Admixtures for concrete, mortar and grout — Test methods — Part 5: Determination of capillary absorption

EN 480-6:2005
Admixtures for concrete, mortar and grout — Test methods — Part 6: Infra red analysis

EN 480-8:2012
Admixtures for concrete, mortar and grout — Test methods — Part 8: Determination of the conventional dry material content

EN 480-10:2009
Admixtures for concrete, mortar and grout — Test methods — Part 10: Determination of water-soluble chloride content

EN 480-11:2005
Admixtures for concrete, mortar and grout — Test methods - Part 11: Determination of air void characteristics in hardened concrete

EN 480-12:2005
Admixtures for concrete, mortar and grout — Test methods — Part 12: Determination of the alkali content of admixtures

EN 480-14:2006
Admixtures for concrete, mortar and grout — Test methods — Part 14: Determination of the effect on corrosion susceptibility of reinforcing steel by potentiostatic electro-chemical test

EN 934-1:2008
Admixtures for concrete, mortar and grout — Part 1: Common aspects

Admixtures for concrete, mortar and grout — Part 2: Concrete admixtures — Definitions, requirements, conformity, marking and labelling

EN 934-5:2007
Admixtures for concrete, mortar and grout — Part 5: Admixtures for sprayed concrete — Definitions, requirements, conformity, marking and labelling

EN 934-6:2001+A1:2005
Admixtures for concrete, mortar and grout — Part 6: Sampling, conformity control and evaluation of conformity

EN 12350-2:2009
Testing fresh concrete — Part 2: Slump test

EN 12390-3:2009
Testing hardened concrete — Part 3: Compressive strength of test specimens

EN 12350-5:2009
Testing fresh concrete — Part 5: Flow table test

EN 12350-7:2009
Testing fresh concrete — Part 7: Air content — Pressure methods

EN 14487-1:2005
Sprayed concrete — Part 1: Definitions, specifications and conformity

EWC/AVV waste code
Directive governing introduction of the European Waste Catalogue
http://www.ngs-mbh.de/zs/eak.html
ISO 758:1976
Liquid chemical products for industrial purposes; Determination of density at 20 °C

ISO 4316:1977
Surface active agents; Determination of the pH value of aqueous solutions; Potentiometric method

PCR Part A

PCR Part B
Product Category Rules for Construction Products, Part B: Requirements on the EPD for concrete admixtures, 2014-07

REACH Directive