Sika[®] AnchorFix-3001

High performance, 2 component adhesive anchor system use in cracked & uncracked concrete

Description	Sika AnchorFix-3001 adhesive anchor system has been specially formulated as a high performance, two component adhesive anchor system for threaded bars and reinforcing bars in both cracked and uncracked concrete.
Where to Use	 Cracked & uncracked concrete Hard natural stone Solid rock Solid masonry
Advantages	 Fixing close to free edges Versatile range of embedment depths Anchoring without expansion forces
Packaging	20.2 fl. oz. (600 ml) or 50.7 fl. oz. (1500 ml) cartridges
Approvals	 ESR to AC308 by ICC-ES (ESR-3608) ACI 355.4 compliant Certified to ANSI /NSF - 61 by IAPMO-R&T (file N-7858) Sikadur AnchorFix-3001 has been tested according to ASTM C 881 Type I, IV, Class C, Grade 3
	Typical Data RESULTS MAY DIFFER BASED UPON STATISTICAL VARIATIONS DEPENDING UPON MIXING METHODS AND EQUIPMENT, TEMPERATURE, APPLICATION METHODS, TEST METHODS, ACTUAL SITE CONDITIONS AND CURING CONDITIONS. Shelf Life When stored correctly, the shelf life will be for 24 months from the date of manufacture.

Storage Conditions Cartridges should be stored in their original packaging, the correct way up, in cool conditions (+50°F to +77°F) out of direct sunlight.

Working & Loading Times							
Cartridge Temperature	T Work (minutes)	Base Material Temperature	T Load (hours)				
+50°F to +59°F	20	+40°F to +49°F	24				
+50 F 10 +59 F	20	+50°F to +59°F	12				
+59°F to +72°F	15	+59°F to +72°F	8				
+72°F to +77°F	11	+72°F to +77°F	7				
+77°F to +86°F	8	+77°F to +86°F	6				
+86°F to +95°F	6	+86°F to +95°F	5				
+95°F to +104°F	4	+95°F to +104°F	4				
+104°F	3	+104°F	3				
T Work is the typical time to gel at the highest temperature in the range T Load is the typical time to reach full capacity							

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

Physical Properties								
Property	Result	Method						
Consistency	Pass	ASTM C 881						
Gel Time	10 minutes**	ASTM C 881						
Bond Strength (2 day cure)	2,500 psi	ASTM C 882						
Bond Strength (14 day cure)	2,700 psi	ASTM C 882						
Compressive Strength (7 day)	>13,000 psi	ASTM D 695						
Compressive Modulus (7 days)	420,000 psi	ASTM D 695						
Water Absorption	0.08%	ASTM D 570						
Heat Deflection Temperature	122°F	ASTM D 468						
Linear Coefficient of Shrinkage	0.0003 in/in	ASTM D 2566						

*The design professional on the job is ultimately responsible for the interpretation of the data provided above. **Note: Per section 5.2 "The purchaser may specify a minimum gel time of 5 minutes for Types I and IV when automatic proportioning, mixing and dispensing equipment are used."

Installation Specification										
Property	Symbol	Unit								
Threaded Rod Diameter	d _a	in	3/8	1/2	5/8	3/4	7/8	1	1-1/4	
Drill Bit Diameter	d _o	in	1/2	9/16	3/4	7/8	1	1-1/8	1-3/8	
Cleaning Brush Size	d _b	-	S14H/F	S16H/F	S22H/F	S24H/F	S27H/F	S31H/F	S38H/F	
Nozzle Type	-	-	Q	Q	Q /QH	QH	QH	QH	QH	
Extension Tube Required?	-	-	Y1 > 3.5" h _{ef}	Y1 > 3.5" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	
Resin Stopper Required?	-	-	NO	NO	RS18 > 10" h _{ef}	RS18 > 10" h _{ef} RS18 > 10" h _{ef}		RS22 > 10" h _{ef}	RS30 > 10" h _{ef}	
Rebar Size	d _a	in	#3	#4	#5	#6	#7	#8	#10	
Drill Bit Diameter	d _。	in	9/16	5/8	3/4	7/8	1	1-1/8	1-3/8	
Cleaning Brush Size	d _b	-	S16H/F	S18H/F	S22H/F	S27H/F	S31H/F	S35H/F	S43H/F	
Nozzle Type	-	-	Q	Q	Q /QH	QH	QH	QH	QH	
Extension Tube Required?	-	-	Y1 > 3.5" h _{ef}	Y1 > 3.5" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	Y2 > 10" h _{ef}	
Resin Stopper Required?	-	-	NO	NO	RS18 > 10" h _{ef}	RS18 > 10" h _{ef}	RS22 > 10" h _{ef}	RS22 > 10" h _{ef}	RS30 > 10" h _{ef}	
Maximum Tight- ening Torque	T _{inst}	ft.lb	15	30	60	100	125	150	200	

Y1 - requires 3/8" diameter extension tube fitted to Q nozzle

Y2 requires 9/16" diameter extension tube fitted to QH nozzle

RS22 - use 22mm diameter resin stopper

RS30 - use 30mm diameter resin stopper

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

Allowable Steel Strength for Threaded Rods											
		Carbon Steel ASTM F 1554 Grade 36 (A307 Gr.C)		Carbon Steel ASTM A 193 B7			ss Steel 593 CW	Stainless Steel ASTM F 593 SH			
Anchor D (in		Allowable Tension, N _{all}	Allowable Shear, V _{all}	Allowable Tension, N _{all}	Allowable Shear, V _{all}			Allowable Tension, N _{all}	Allowable Shear, V _{all}		
3/8"	lb	2,110	1,080	4,550	2,345	3,360	1,870	4,190	2,160		
3/0	kN	9.4	4.8	20.2	10.4	16.1	8.3	18.6	9.6		
1/2"	lb	3,750	1,930	8,100	4,170	6,470	3,330	7,450	3,840		
1/2	kN	16.7	8.6	36.0	18.5	28.8	14.8	33.1	17.1		
5/8"	lb	5,870	3,030	12,655	6,520	10,130	5,220	11,640	6,000		
5/6	kN	26.1	13.5	56.3	29.0	45.1	23.2	51.8	26.7		
3/4"	lb	8,460	4,360	18,220	9,390	12,400	6,390	15,300	7,880		
3/4	kN	37.6	19.4	81.0	41.8	55.2	28.4	68.1	35.1		
7/8"	lb	11,500	5,930	24,800	12,780	16,860	8,680	20,830	10,730		
//8	kN	51.2	26.4	110.3	56.8	75.0	38.6	92.7	47.7		
1"	lb	15,020	7,740	32,400	16,690	22,020	11,340	27,210	14,020		
1	kN	66.8	34.4	144.1	74.2	97.9	50.4	121.0	62.4		
1 - 1/4"	lb	23,480	12,100	50,640	26,070	34,420	17,730	38,470	19,820		
1 - 1/4	kN	104.4	53.8	225.1	116.0	153.1	78.9	171.1	88.2		

Allowable Tension, $N_{_{all}}=0.33 \ x \ f_{_{u}} \ x$ nominal cross sectional area Allowable Shear, $V_{_{all}}=0.17 \ x \ f_{_{u}} \ x$ nominal cross section area

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

Allowable St	eel Strength f	or Rebar		Allowable Stee	I Strength f	or Rebar	
		Carbon Steel ASTM A 61	5 Grade 60	Carbon Steel CAN/CSA-G30.18 Gr.40			
Reba	ar Size	Allowable Tension, N _{all}	Allowable Shear, V _{all}	Rebar S	Size	Allowable Tension, N _{all} Allowable She	
#3	lb	3,280	1,690	1011	lb	4,016	2,069
#3	kN	14.6	7.5	10M	kN	17.9	9.2
#4	lb	5,831	3,004		lb	8,052	4,148
#4	kN	25.9	13.4	15M	kN	35.8	18.5
#5	lb	9,111	4,693		lb	11,960	6,161
#0	kN	40.5	20.9	20M	kN	53.2	27.4
#6	lb	13,121	6,759		lb	19,975	10,290
#0	kN	58.4	30.1	25M	kN	88.9	45.8
#7	lb	17,859	9,200		lb	28,121	14,486
#1	kN	79.4	40.9	30M	kN	125.1	64.4
#8	lb	23,326	12,016		lb	40,089	20,652
#0	kN	103.8	53.4	35M	kN	178.3	91.9
#40	lb	37,623	19,381	Tension = 0.33 x f	x nominal o	cross sectional area	
#10	kN	167.4	86.2	Shear = 0.17 x f	x nominal cro	oss section area	

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

1. Above values for reinforcing steel assume the design method is the same as a post-installed adhesive anchor, under the principles of anchor design (failure modes will be concrete breakout, pryout, steel failure, or adhesive bond) and not under the principles of reinforcing steel design (failure modes are typically splitting failure, inadequatebar development etc..). CONSULT AN ENGINEERING DESIGN PROFESSIONAL PRIOR TO USE.

		Allowable Concrete Capacity /Bond							
Anchor Diameter	Embedment Depth		Tension (lb)			Shear (lb)			
		f² _c =2,500psi	f² _c =4,000psi	f² _c =8,000psi	f² _c =2,500psi	f²_c=4,000psi	f² _c =8,000psi		
	2-3/8"	1,939	2,032	2,178	2,585	2,710	2,904		
3/8" or #3	4-15/16"	4,031	4,225	4,528	5,375	5,633	6,038		
	7-1/2"	6,123	6,418	6,878	8,164	8,557	9,171		
	2-3/4"	2,527	2,649	2,839	3,369	3,531	3,785		
1/2" or #4	6-3/8"	5,858	6,140	6,581	7,811	8,187	8,774		
	10"	9,186	9,631	10,323	12,252	12,842	13,764		
	3-1/8"	3,889	4,076	4,368	5,185	5,434	5,824		
5/8" or #5	7-13/16"	9,722	10,189	10,921	12,962	13,586	14,561		
	12-1/2"	15,555	16,303	17,473	20,739	21,737	23,298		
	3-3/4"	5,200	5,450	5,841	6,933	7,267	7,788		
3/4" or #6	9-3/8"	13,000	13,625	14,603	17,333	18,167	19,471		
	15"	20,799	21,800	23,365	27,732	29,067	31,153		
	4"	8,407	8,811	9,444	11,209	11,749	12,592		
1" or #8	12"	25,221	26,434	28,332	33,628	35,246	37,776		
	20"	42,035	44,057	47,219	56,046	58,743	62,959		
	5"	10,529	11,036	11,828	14,039	14,715	15,771		
1-1/4" or #10	15"	31,588	33,108	35,484	42,117	44,144	47,312		
	25"	52,646	55,180	59,140	70,195	73,573	78,853		

for tension and 3.0 for shear , however, in some cases, such as life safety, safety factors of 10.0 or higher may be necessary.

 2. Allowable loads must be checked against steel capacity. The lowest value controls.
 3. Tabulated data is applicable to single anchors in normal weight concrete unaffected by edge or spacing reduction factors. V alues are valid for anchors installed into dry concrete in holes drilled with a hammer drill and ANSI carbide drill bit. 4. Linear interpolation is allowed.

*The design professional on the job is ultimately responsible for the interpretation of the data provided above.

In - Service Temperature	Reduction Factor*	
40°F	1.0	
68°F	1.0	
110°F	0.9	
130°F	0.7	
150°F	0.5	*- th
168°F	0.4	**
176°F	0.3	e

The design professional on the job is ultimately responsible for the interpretation of ne data provided above.

For intermediate temperatures, linear interpolation is allowed. Values must not be xtrapolated.

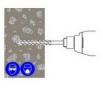
Coverage

Anchor size:		(in.)	5/16	3/8	1/2	5/8	3/4	1	1 1/4
Drill Hole Diameter:		(in.)	3/8	1/2	9/16	3/4	7/8	1 1/8	1 3/8
Embedment Depth:		(in.)	2 3/8	2 3/8	2 3/4	3 1/8	3 3/4	4	5
Estimated Number of Fixing *	Cartridge Volume	600 ml	176	99	67	33	20	11	6
		1500 ml	455	256	175	86	53	30	16

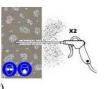
*Number of fixings assumes 30ml wastage in initial extrusion and holes filled to 3/4 full

Anchor size:		(in.)	5/16	3/8	1/2	5/8	3/4	1	1 1/4
Drill Hole Diameter:		(in.)	3/8	1/2	9/16	3/4	7/8	1 1/8	1 3/8
Embedment Depth:		(in.)	3 1/8	3 3/4	5	6 1/4	7 1/2	10	12 1/2
Estimated Number of Fixing *	Cartridge	600 ml	134	62	37	16	10	4	2
	Volume	1500 ml	346	162	96	43	26	12	6

*Number of fixings assumes 30ml wastage in initial extrusion and holes filled to 3/4 full



Application


Installation Method (Solid Substrates)

Always refer to MPII on ICC-ESR-3608

1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit conforming to ANSI B212.15-1994 of the appropriate size, drill the hole to the specified hole diameter and depth.

 Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90 psi (6 bar).

Perform the blowing operation twice.

3. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush

extension if needed to reach the bottom of the hole and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.

- 4. Repeat 2 (blowing operation) twice.
- 5. Repeat 3 (brushing operation) twice.
- 6. Repeat 2 (blowing operation) twice.
- Select the appropriate static mixer nozzle, checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Note: The SAF-Q2 nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two sections firmly together until a positive engagement is felt.

Note: AnchorFix[®]-3001 may only be installed between the temperatures of 40°F and 104°F. The product must be conditioned to a minimum of 50°F. For gel and cure time data, refer to Table 14.

 Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

Constructior

 As specified in Figure 2, Table 11, and Table 12, attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit.

(The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).

10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is entravirentely 3(full)

the hole is approximately ³/₄ full and remove the nozzle from the hole.

11. Select the steel anchor element ensuring it is free from oil or other contaminants, and mark with the required embedment depth. Insert the steel element into the hole using a back and forth twisting

motion to ensure complete cover, until it reaches the bottom of the hole. Excess resin will be expelled from the hole evenly around the steel element and there shall be no gaps between the anchor element and the wall of the drilled hole.

- 12. Clean any excess resin from around the mouth of the hole.
- 13. Do not disturb the anchor until at least the minimum cure time has elapsed. Refer to the Table 14 Gel and Cure Times to determine the appropriate cure time.
- 14. Position the fixture and tighten the anchor to the appropriate installation torque.

Do not over-torque the anchor as this could adversely affect its performance.

Overhead Substrate Installation Method Always refer to MPII on ICC-ESR-3608

- 1. Using the SDS Hammer Drill in rotary hammer mode for drilling, with a carbide tipped drill bit conforming to ANSI B212.15-1994 of the appropriate size, drill the hole to the specified hole diameter and depth.
- Select the correct Air Lance, insert to the bottom of the hole and depress the trigger for 2 seconds. The compressed air must be clean – free from water and oil – and at a minimum pressure of 90 psi (6 bar).

Perform the blowing operation twice.

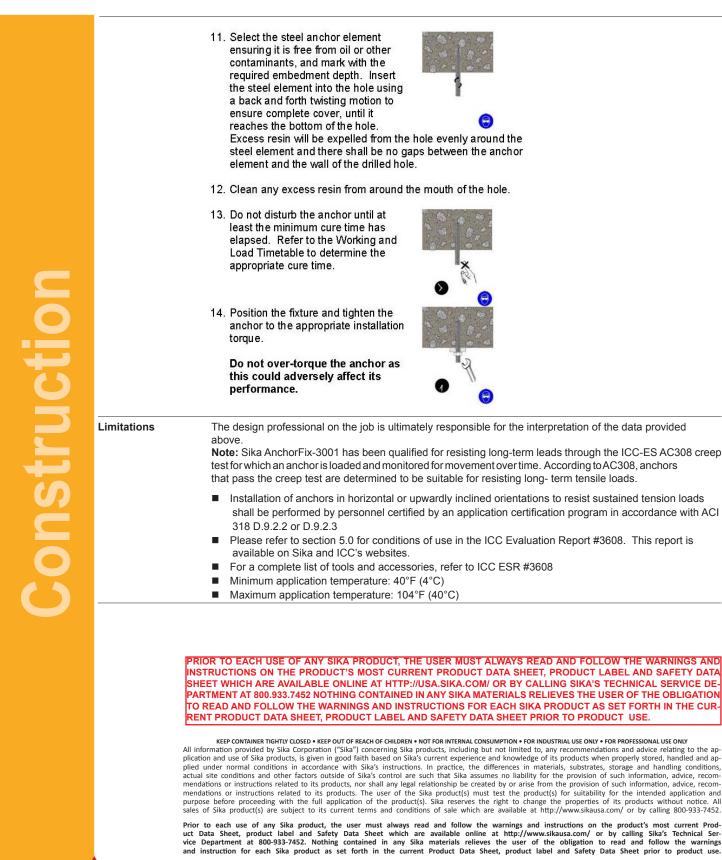
3. Select the correct size Hole Cleaning Brush. Ensure that the brush is in good condition and the correct diameter. Insert the brush to the bottom of the hole, using a brush extension if needed to reach the bottom of the hole, and withdraw with a twisting motion. There should be positive interaction between the steel bristles of the brush and the sides of the drilled hole.

Perform the brushing operation twice.

- 4. Repeat 2 (blowing operation) twice.
- 5. Repeat 3 (brushing operation) twice.
- 6. Repeat 2 (blowing operation) twice.
- 7. Select the appropriate static mixer nozzle checking that the mixing elements are present and correct (do not modify the mixer). Attach mixer nozzle to the cartridge. Check the Dispensing Tool is in good working order. Place the cartridge into the dispensing tool.

Note: The SAF-Q2 nozzle is in two sections. One section contains the mixing elements and the other section is an extension piece. Connect the extension piece to the mixing section by pushing the two

sections firmly together until a positive engagement is felt.


Note: AnchorFix®-3001 may only be installed between the Temperatures of 40°F and 104°F. The product must be Conditioned to a minimum of 50°F. For gel and cure time data, refer to Table 14.

8. Extrude some resin to waste until an even-colored mixture is extruded, The cartridge is now ready for use.

- 9. As specified in Figure 2, Table 11, and Table 12, attach an extension tube with resin stopper (if required) to the end of the mixing nozzle with a push fit. (The extension tubes may be pushed into the resin stoppers and are held in place with a coarse internal thread).
- 10. Insert the mixing nozzle to the bottom of the hole. Extrude the resin and slowly withdraw the nozzle from the hole. Ensure no air voids are created as the nozzle is withdrawn. Inject resin until the hole is approximately 3/4 full and remove the nozzle from the hole.

Sika warrants this product for one year from date of installation to be free from manufacturing defects and to meet the technical properties on the current Product Data Sheet if used as directed within shelf life. User determines suitability of product for intended use and as-sumes all risks. Buyer's sole remedy shall be limited to the purchase price or replacement of product exclusive of labor or cost of labor. NO OTHER WARRANTIES EXPRESS OR IMPLIED SHALL APPLY INCLUDING ANY WARRANTY OF MERCHANTABILITY OF FITNESS FOR A PARTICU-LAR PURPOSE. SIKA SHALL NOT BE LIABLE UNDER ANY LEGAL THEORY FOR SPECIAL OR CONSEQUENTIAL DAMAGES. SIKA SHALL NOT BE RESPON-SIBLE FOR THE USE OF THIS PRODUCT IN A MANNER TO INFRINGE ON ANY PATENT OR ANY OTHER INTELLECTUAL PROPERTY RIGHTS HELD BY OTHERS.

Sika Mexicana S.A. de C.V.

Fracc. Industrial Balvanera

Corregidora, Queretaro

Fax: 52 442 2250537

C.P. 76920 Phone: 52 442 2385800

Carretera Libre Celava Km. 8.5

Visit our website at www.sikausa.com

Sika Corporation 201 Polito Avenue Lyndhurst, NJ 07071 Phone: 800-933-7452 Fax: 201-933-6225

(R)

Regional Information and Sales Centers. For the location of your nearest Sika sales office, contact your regional center. Sika Canada Inc. 601 Delmar Avenue Pointe Claire Quebec H9R 4A9 Phone: 514-697-2610 Fax: 514-694-2792

1-800-933-SIKA NATIONWIDE

