

MICRO FIBERS FOR CONCRETE REINFORCING ENVIRONMENTAL PRODUCT DECLARATION CRADLE-TO-GATE SIKAFIBER

General information

Manufacturer Name: SIKA Corporation

4019 Industry Drive

Chattanooga, TN 37416

Program Operator: ASTM International

100 Barr Harbor Drive West Conshohocken, PA

19428-2959, USA

Declaration Number: EPD 718

Reference PCR: ISO 21930: 2017

Date of Issuance: June 4, 2024

End of Validity: June 4, 2029

Product Name: SikaFiber® - Micro Synthetic Fibers

EPD Owner: SIKA Corporation

Declared Unit: 1 kg of SikaFiber®

EPD Scope: Cradle-to-gate (A1, A2, and A3)

Prepared By: WAP Sustainability Consulting

Verification: ISO 21930 serves as the core PCR. Independent verification of the

declaration according to ISO 14025 and ISO 21930.

delly & Brode

☐ internal ☐ external

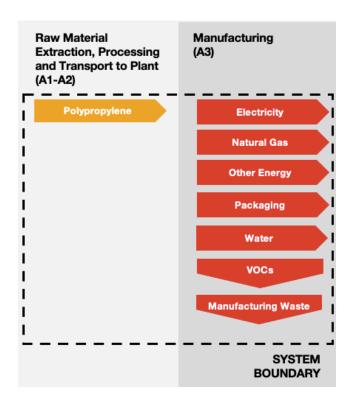
LCA Reviewer Timothy S. Brooke and EPD Verifier: ASTM International

Company information

Sika is a specialty chemicals company with a globally leading position in the development and production of systems and products for bonding, sealing, damping, reinforcing, and protecting in the building sector and motor vehicle industry. Sika has subsidiaries in 102 countries, manufactures in over 400 factories, and develops innovative technologies for customers around the world that facilitate the sustainable transformation of the construction and transportation industries.

Product information

SikaFiber microfibers are synthetic monofilament and fibrillated polypropylene microfibers for concrete, shotcrete, mortar, and grout that comply with ASTM C 1116, Standard Specification for Fiber Reinforced Concrete and Shotcrete. The fibers (Figure 1) are specifically designed and used for plastic shrinkage crack control, secondary reinforcing applications for slabs and precast concrete. SikaFiber microfibers have been shown to significantly reduce plastic shrinkage cracking when compared to plain concrete. During the plastic settlement phase, the fibers create a three-dimensional support network that resists the downward pull of gravity, thus keeping aggregates in suspension and promoting uniform bleed in the concrete. The micro SikaFiber increases the tensile strain capacity of the concrete during the plastic shrinkage phase. In addition, shotcrete applications the SikaFiber microfibers can reduce rebound and Sika Fibermesh 150f can be utilized to reduce explosive spalling in concrete.


The Sika Fibermesh 150, Sika Fibermesh 150f Sika Fibermesh 300, Sika Fibercast 500, and Sika Fibermesh HP are identical in chemical composition and are similarly manufactured and packaged. The fiber products are differentiated by fiber diameter, length, and degree of fibrillation. Dosage rates will vary depending on the fiber type and reinforcing requirements and can range from 0.5 to 1.5 lbs/yd³ (0.3 to 0.6 kg/m³).

	Sika Fibermesh 150	Sika Fibermesh150-F	Sika Fibermesh HP	Sika Fibermesh 300	Sika Fibercast 500					
		Microsynthetic								
Water Absorption	Negligible	Negligible	Negligible	Negligible	Negligible					
Specific Gravity	0.91	0.91	0.91	0.91	0.91					
Fiber Length, in (mm)	Graded 0.5, 0.75 (12.7, 19)	0.24 or 0.47 (6 or 12)	Graded 0.24, 0.47 (6,12)	Graded 0.5, 0.75 (12.7 -19)	0.25, 0.5, 0.75 or 2 (6, 12, 19 or 52)					
Electrical / Thermal Conductivity	Low	Low Low		Low	Low					
Acid and Alkali Resistance	Excellent	Excellent	Excellent	Excellent	Excellent					
Melt Point, °F (°C)	324 (162)	324 (162)	324 (162)	324 (162)	324 (162)					
Minimum Dosage Rate, lb/yd ³	0.5	1.5	0.5	1.5	1.5					
(kg/m ³)	(0.3)	(0.9)	(0.3)	(0.9)	(0.9)					
Color	white	white	white	white	white					

LCA information

Declared unit	1 kg of SikaFiber®
Reference service life	Not declared as use phase is not included in the study
Description of the system boundaries	Cradle to Gate
Geographical representativeness	A1-A3: United States
Time representativeness	Primary data collected for calendar year 2022
Cut-off rules	All flows for which data were provided are included in the assessment, accounting for at least 99% of the energy or mass flows and at least 99% of the environmental impacts from the product system. Production of capital equipment is excluded from this assessment.
Database and LCA	SimaPro 9.0.1
software used	Ecoinvent V3.9.1
LCA Report	LCA of Macro and Micro Synthetic Fibers, WAP Sustainability, February 2023
Scenario Description: A2	Primary data of transportation from suppliers: 1300 km by rail, 32-870 km by truck
Scenario Description: A3	Electricity Source: country-specific residual mix

System diagram:

Modules declared, geographical scope, share of specific data (in GWP-GHG results) and data variation (in GWP-GHG results):

	Product stage Construction process stage				Use stage				End of life stage				Resource recovery stage				
	Raw material supply	Transport	Manufacturing	Transport	Construction installation	Use	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	De-construction demolition	Transport	Waste processing	Disposal	Reuse-Recovery-Recycling- potential
Module	A 1	A2	А3	A4	A 5	В1	B2	В3	В4	В5	В6	В7	C1	C2	C3	C4	D
Modules declared	Х	Х	Х	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
Geography		US		ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND

Content information

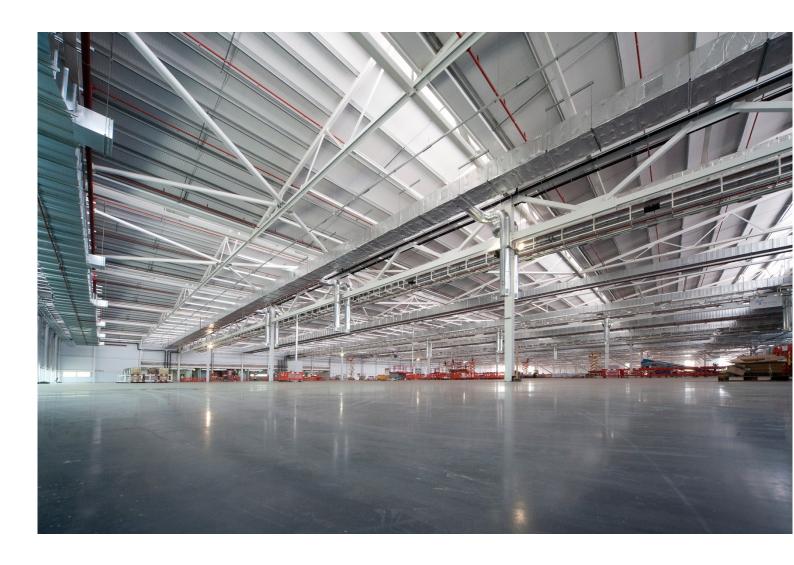
Product components	Weight, kg (per 1 kg)	Post-consumer material, weight-%	Biogenic material, weight-% and kg C/kg		
Polypropylene 4MF	0.272	0%	0%		
Polypropylene 18MF	0.728	0%	0%		
TOTAL	1.00	0%	0%		

No substances in the product are on the Candidate List of Substances of Very High Concern (SVHC) which exceed the limits for registration with the European Chemicals Agency

Results of the environmental performance indicators

The results presented here are for 1 declared unit, which is 1 kg of SikaFiber®

The recalle precented here t											
Environmental Indicator	Abbreviation	Units	Total	A1	A2	A3					
Core Mandatory Impact Indicator											
Global warming potential	GWP	kg CO2-eq	3.18E+00	1.90E+00	2.93E-02	1.25E+00					
Depletion potential of the stratospheric ozone layer	ODP	kg CFC-11- eq	1.17E-07	1.07E-08	1.12E-12	1.06E-07					
Acidification potential of land and water	AP	kg SO ₂ -eq	1.20E-02	7.49E-03	5.22E-04	4.02E-03					
Eutrophication potential	EP	kg PO ₄ -eq	9.90E-03	1.52E-04	3.17E-05	9.72E-03					
Formation of tropospheric ozone	SFP	kg O₃-eq	1.33E-01	7.72E-02	1.70E-02	3.89E-02					
Abiotic depletion potential for fossil resources	ADPf	MJ Surplus	8.89E+01	7.50E+01	3.79E-01	1.35E+01					
Use of Primary Resources											
Renewable primary energy carrier used as energy	RPRE	MJ	1.04E+00	1.44E-01	0.00E+00	9.00E-01					
Renewable primary energy carrier used as material	RPRM	MJ	1.73E+00	0.00E+00	0.00E+00	1.73E+00					
Non-renewable primary energy used as energy	NRPRE	MJ	9.61E+01	7.50E+01	3.79E-01	2.07E+01					
Non-renewable primary energy used as material	NRPRM	MJ	1.59E-03	0.00E+00	0.00E+00	1.59E-03					
Secondar	ry Material, Seco	ndary Fuel and	Recovered E	nergy							
Use of secondary materials	SM	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Use of renewable secondary fuels	RSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Use of non-renewable secondary fuels	NRSF	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Recovered energy	RE	MJ	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
	Mandatory I	nventory Paran	neters								
Use of freshwater resources	FW	m ³	3.75E-01	7.88E-03	0.00E+00	3.67E-01					
	Indicators	Describing Wa	aste								
Disposed of hazardous waste	HWD	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Disposed of non-hazardous waste	NHWD	kg	7.79E-02	0.00E+00	0.00E+00	7.79E-02					
Disposed of high-level radioactive waste	HLRW	m ³	3.90E-09	0.00E+00	7.74E-10	3.13E-09					
Disposed of low-level radioactive waste	LLRW	m ³	3.58E-08	0.00E+00	7.40E-09	2.84E-08					
Components for reuse	CRU	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Materials for recycling	MFR	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Materials for energy recovery	MER	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Exported electrical energy (waste to energy)		kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					
Exported thermal energy (waste to energy)	ETE	kg	0.00E+00	0.00E+00	0.00E+00	0.00E+00					


The estimated impact results are only relative statements, which do not indicate the endpoints of the impact categories, exceeding threshold values, safety margins and/or risks. The results of modules A1-A3 shouldn't be used without considering the results of module C. A1-A3 results include the "balancing-out reporting" of biogenic CO₂ of packaging, traditionally released in A5. Additional optional indicators per EN 15804+A2 are not declared, including: particulate matter emissions; ionizing radiation, human health; eco-toxicity (freshwater); human toxicity, cancer effects; human toxicity, non-cancer effects; land use related impacts/soil quality.

Additional environmental information

No additional environmental, social, or economic information is declared in this EPD.

References

- ASTM 2020 ASTM Program Operator for Product Category Rules (PCR) and Environmental Product Declarations (EPDs) General Program Instructions v8, April 29th.
- WAP Sustainability Consulting: 2023 A Cradle-to-Gate Life Cycle Assessment of SIKAFIBER® ® Manufactured by SIKA.
- ISO 21930: 2017 Building construction Sustainability in building construction Environmental declaration of building products.
- ISO 14025: 2006 Environmental labeling and declarations Type III environmental declarations Principles and procedures.
- ISO 14044:2006/AMD 1:2017/ AMD 2:2020 Environmental management Life cycle assessment - Requirements and guidelines.
- 14040:2006/AMD 1:2020 Environmental management Life cycle assessment Principles and framework.

GLOBAL BUT LOCAL PARTNERSHIP

WHO WE ARE

Sika AG, located in Baar, Switzerland, is a specialty chemicals company with a leading position in the development and production of systems and products for bonding, sealing, damping, reinforcing, and protecting in the building sector and the motor vehicle industry.

The corporation has subsidiaries in 98 countries, employs more than 17,000 people worldwide, and has more than 190 manufacturing facilities around the globe.

Our most current General Sales Conditions shall apply.
Please consult the Product Data Sheet prior to any use and processing.

SIKA CORPORATION—SIKAFIBER

4019 Industry Dr Chattanooga, TN 37416 Tel: 1.833.236.1255 sikafibers@us.sika.com

